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ABSTRACT
For license plate detection (LPD), most of the existing work is
based on images as input. If these algorithms can be applied to
multiple frames or videos, they can be adapted to more complex
unconstrained scenes. In this paper, we propose a LPD framework
for detecting license plates in multiple frames or videos, called
AWFA-LPD, which effectively integrates the features of nearby
frames. Compared with image based detection models, our network
integrates optical flow extraction module, which can propagate the
features of local frames and fuse with the reference frame. Moreover,
we concatenate a non-link suppression module after the detection
results to post-process the bounding boxes. Extensive experiments
demonstrate the effectiveness and efficiency of our framework.
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1 INTRODUCTION
License plate detection (LPD), locating the license plates (LPs) in
images, is a crucial branch of the intelligent transportation systems
(ITS). LPD is an integral stage of a complete Automatic License
Plate Recognition (ALPR) system, which could be widely used in
a variety of applications such as self-driving systems, parking fee
management, and road traffic monitoring [7, 13, 15].

With the rapid development of deep neural networks in the past
few years, numerous work has been applied to ALPR systems. A
complete ALPR system generally contains two stages: firstly locate
the LPs by object detection methods and crop the area; secondly
identify the LP characters through text recognition algorithms.
Identifying the LP numbers in the cropped regions could be sim-
ply divided into two categories, segmentation based methods and
segmentation-free methods. In [7], Li et al. recognize the LP charac-
ters by adopting recurrent neural networks (RNNs) and connection-
ist temporal classification (CTC), without character segmentation.
In [5], Laroca et al. utilize the CR-NET [12], which combines char-
acter segmentation and classification, to complete the whole LP
recognition task. However, since ALPR is a cascading system, the
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Figure 1: The results of the mainstream LPs detection meth-
ods in each image. What looks like LP may be misdetected,
making the performance of the LPD systems worse.

results of LP recognition depend largely on the accuracy of LP
detection.

With the advent of networks like YOLO [9, 10] and Faster R-
CNN [11], the LP detection task has made a great breakthrough. In
order to locate LPs efficiently, Li et al. utilize Faster R-CNN network
to detect LPs in [7] and propose an end-to-end ALPR system. In
this way, the direct detection of LPs in unconstrained scenarios
may bring a lot of false positive (FP) samples. Based on this, the
authors in [5, 6, 8] introduce a vehicle detection module before the
LP detection stage to reduce the number of FP samples. However,
these multi-stage approaches also increase the running time of the
model.

It is worth noting that the above methods are all based on images
for ALPR systems. However, many LP detection and recognition
tasks in real scenes are carried out under surveillance videos, which
provide more information than images. In [5], the authors release
a multi-frame based LP recognition datasets named UFPR-ALPR.
Laroca et al. [5] detect vehicles, LPs, and characters in turn and
vote on multiple frames of results to determine the final LP recog-
nition results. Nevertheless, this only makes use of some voting
mechanisms to identify the characters and does not fuse contex-
tual information at the feature level. As can be seen from Figure 1,
some places like LPs on the vehicles may be misdetected, but the
detection results of their adjacent frames do not go wrong.

As mentioned above, although the LPD systems have made a
lot of progress, there are still many problems to be addressed. (1)
Most of the existing algorithms are implemented under specific
conditions and are difficult to be applied in unconstrained scenarios.
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Figure 2: The whole framework of the AWFA-LPD network.
There are two branches of the system, one is used to extract
features of each input frame and the other is utilized to ob-
tain optical flow feature maps between surrounding frames
and reference frame Ii . The obtained features are then sent
to the Aggregation module for adaptive weight feature fu-
sion to obtain the new feature maps and complete the fol-
lowing detection tasks. Finally, NLS is used to post-process
the detection results.

When the images are blurred, LPs are obscured, or the weather
is rainy or foggy, they do not work well. (2) In order to achieve
good results, many algorithms add multiple modules to enhance
detection, which increase the complexity of the systems. (3) Most
research today is based on images as input. However, in practical
applications, there may be continuous multiple frames as input.
If the context information of local frames can be well fused, the
detection results in reference frame will be greatly improved..

To remedy these issues, we design an adaptive weight guided fea-
ture aggregation network named AWFA-LPD in this paper, which
can well fuse the information of nearby frames and obtain a de-
sirable effect. The whole network propagates the information of
these frames through optical flow extraction. Then it allocates the
weight of the feature maps obtained from the input multi-frame
sequence through an adaptive weight calculation module, and fi-
nally aggregates them for subsequent detection task. Moreover, we
also concatenate a non-link suppression mechanism at the end to
establish the spatial relationship between the detection results of
each frame, effectively suppressing FP samples similar to LPs. The
main contributions of this article are as follows:

• An unified deep neural network combining optical flow ex-
traction is proposed, which can fuse the feature maps of local
frames to enhance the detection of the reference frame.
• A non-link suppression module is embedded in the system,
which can be used for post-processing of the detection re-
sults.
• Compared with other image based LP detection methods,
this LPD framework achieves state-of-the-art (SOTA) results.

2 PROPOSED LPD METHOD
In this section, we provide an overview of the entire LPD framework,
and then explain the details of each implementation.

2.1 Overview
Generally speaking, a complete and efficient LPD system is able to
accurately detect LPs in images or videos in unconstrained scenar-
ios. As mentioned above, [5, 6, 8] concatenate the vehicle detection
stage to reduce the FP samples in images, which will increase model
complexity and cannot suppress the FP samples on the vehicles. In
many practical applications, the inputs to the LPD systems can be
a continuous multi-frame images or videos. In this case, we design
a model to directly detect LPs in this paper, which fuses the feature
maps of adjacent frames.

As can be seen from Figure 2, the proposed AWFA-LPD con-
sists of three components: the optical flow alignment module, the
adaptive feature aggregation module, and the non-link suppres-
sion module. The inputs of the entire network are video frames
{Ii } , i = 1, . . . ,∞, and each frame will pass through the shared
convolutional neural networks (CNNs) to get the feature maps

{
fi
}
.

The local feature maps will be propagated to the reference frame
through the optical flow alignment module, and the weight w of
these features will be calculated by the adaptive weight feature
aggregation module and the new feature map {Fi } of the reference
frame will be obtained by aggregating these features. Finally, {Fi }
is sent to the detection network to output the bounding boxes of
the reference frame’s LPs. Then get the outputs of each frame in
turn and the non-link suppression module is used to suppress the
isolated LPs in the sequence and output the final detection results.

2.2 Optical Flow Alignment Module
In our proposed AWFA-LPD, we utilize ResNet-50 [4] as our back-
bone network to extract features from video frames. It is worth
mentioning that the extracted feature maps

{
fi
}
are not spatially

aligned due to the motion of the objects in videos. For example, if
we directly fuse several feature maps of consecutive frames, LPs in
frame t − 1 will offset their location in frame t . In order to alleviate
this problem, the authors in [17–19] apply an optical flow network
in the field of video object detection to propagate the feature maps
between frames. Inspired by this, we utilize an optical flow align-
ment module to correct the feature maps

{
fi
}
before aggregating

them.
Since there is no optical flow groundtruth in the video based

datasets, we utilize FlowNet-Simple [2] to extract optical flow fea-
tures here, which has been pre-trained on the Flying Chairs dataset
[2]. After obtaining the flow features, the feature maps fj on the
neighbor frame Ij are warped to the reference frame Ii by a warping
function, given by

fj→i = Γ
(
fj ,Nf low

(
Ii , Ij
))
, (1)

where Γ is a bilinear warping function applied to each channel
in the feature maps, Nf low represents the optical flow extraction
network and fj→i denotes the feature maps warped from neighbor
frame Ij to the reference frame Ii . It can be seen from Figure 2 that
the visualization of optical flow features Nf low

(
Ii , Ij
)
between

frame j and frame i .
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2.3 Adaptive Weight Feature Aggregation
Module

The feature maps obtained after feature warping need to be ag-
gregated and sent to the next detection network. In this part, we
design a feature aggregation module with adaptive weight, which
can assign different weight to the feature maps of adjacent frames
and aggregate them with the feature maps fi of the reference frame
Ii into a new feature map Fi .

AdaptiveWeight. As the frame interval is larger, the difference
of the feature maps is larger. In this case, we expect feature maps
that are very different from reference frame to have as little im-
pact as possible. Here, we utilize the cosine similarity metric to
calculate the similarity between two feature maps. Given a parame-
ter K representing local frame specifications and the input feature
maps buffer

[
fi−K , . . . , fi+K

]
, if the local features fj is close to the

features fi , it will output a large weight. Here we calculate the
cosine similarity of the features to assign the weight. The weight
estimation formula is given by

w j→i = exp *.
,

fj→i · fi
���fj→i

���
��fi ��

+/
-
, (2)

wherew j→i is a normalized weight and
∑i+K
j=i−Kw j→i = 1. What’s

more, instead of getting the weight directly through softmax, we use
the temperature parameterT [14] to control the weight distribution
here and the softmax-T formula is given by

w̄ j→i =
exp
(
w j→i/T

)
∑i+K
j=i−K exp

(
w j→i/T

) . (3)

It can be seen that when T is larger, the weight is smoother, on the
contrary it is sharper.

After optical flow alignment and weight calculation, the features
Fi of the reference frame will be obtained by

Fi =
∑i+K
j=i−K w̄ j→i fj→i , (4)

and Fi are then sent to the detection network to locate the LPs in
the reference frame.

2.4 Non-link Suppression Mechanism
Fi input to the detection network will output the bounding boxes
(bboxes) and scores of LPs in the reference frame. Although the fea-
tures of nearby frames have been aggregated in Fi , if the detection
results of surrounding frames can be combined at box-level, better
results will be achieved.

In [3], Han et al. propose the Seq-NMS to establish the connection
between the output bboxes. However, Seq-NMS connects bounding
boxes first and then carries out non-maximum suppression (NMS)
operation, whose results depend largely on the connection results.
As the LP is small, Seq-NMS will cause deviation to the overall
detection results.

In this case, we propose the non-link suppression mechanism
(NLS). NLS first uses NMS to get preliminary detection results
in each frame, and then connects the bboxes of each frame. For
example, when the Intersection over Union (IoU) of the bbox of Ii
and the bbox of Ii+1 is greater than 0.3, the bbox is considered to be

the same LP and a connection is established. If there is a bbox that
cannot connect to any bboxes of adjacent frames, remove it. The
function of NLS is to suppress the number of isolated FP samples,
effectively increasing precision.

2.5 Network Structure
As shown in Figure 2, we utilize the ResNet50 as the shared back-
bone network and R-FCN as the detection network.

Backbone. The input frames are resized to a size of 562 × 1000
before being sent to the network. For Resnet-50 [4], we discard the
average pooling layer and the 1000-d fully convolutional layer, only
using the convolutional layers to extract feature maps. At the same
time, we also remove the conv5 block so that the final output is
1024 channels.

Optical Flow Network. As shown in Figure 2, the size of the
features extracted from the shared convolutional neural networks
is 1024 × 36 × 63, which is 1

16 of the input images. To ensure that
the output of the optical flow extraction is the same size as the
output of the backbone, we reduce the size by appending a pooling
layer before feeding it into the optical flow network. To get the
optical flow features between frames, we utilize the CNN based
network named Flownet-Simple [2] here to extract the optical flow
feature maps. As the existing datasets do not have the groundtruth
of optical flow features, we directly load the model parameters for
training on the Flying Chairs dataset [2].

Detection Network. Compared with Faster-RCNN, R-FCN has
a faster detection speed and even higher accuracy. After obtaining
the aggregated feature maps, there will be two branches of full
convolutional networks, respectively used for region proposal and
detection. In the region proposal network (RPN), two sibing 1 ×
1 convolutional layers are appended to output object scores and
bounding boxes, respectively. In the detection part, there are also
two 1 × 1 convolutional layers output the position-sensitive score
maps and bounding box regression maps, Their dimensions are
k2 (C + 1) and 4k2, where C denotes the object categories (+1 for
background) and k2 denotes a k × k saptial grid describing relative
positions. Here, we take C = 1, k = 3, then k2 encodes the cases of
{top-left, top-center, top-right, ..., bottom-right} of an object category.
Finally, region of interset (ROI) align, voting by averaging the k2
scores and non-maximum suppression (NMS) are used to obtain the
classification scores and bboxes regression results of each frame.

3 EXPERIMENTS
In this section, we will describe the experimental details and present
the final results.

3.1 Datasets and Implementation Settings
In order to verify that the LPD system is effective, we do exper-
iments on the video based dataset named UFPR-ALPR [5]. This
dataset contains 60 videos for training, 30 for validation and 60
for testing. Compared with the ordinary LP datasets, it has two
characteristics, which are based on continuous multiple frames and
complex LPs with motorcycles inside. Moreover, UFPR-ALPR has
30 frames in each video.

During the experiment, we set K to 2, that is, the total number
of frames to be input as 5. If too many frames are input, the model
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will take too long to run. Moreover, we set T to 0.1 to give more
confidence to the features that are closer to the feature maps of the
reference frame. We make all experiments on a computer with an
Intel Core 3.4GHz CPU, 12GB of RAM and four NVIDIA 1080Ti
GPU.

3.2 Performance Evaluation and Ablation
Study

We compare the results with YOLOv3 [10], EAST [16], R-FCN [1],
FGFA [18], and the method in original dataset [5]. Since object cate-
gory we detected is only LP, the detection accuracy is measured by
precision and recall rate here, which makes the specific test results
be more clear. In order to comprehensively consider precision and
recall, we used F1-score as a supplementary evaluation method.
The formula is as follows:

F1 − score =
2 × Precision × Recall
(Precision + Recall )

(5)

The running time of the model can evaluate the efficiency of the
model. Here, we calculate the time taken by the model in each
algorithm to process the whole image as runtime. Referring to
YOLO and Faster-RCNN, we only consider the IoU between the
detection result and the groundtruth greater than or equal to 0.5 as
true positive sample.

Table 1: LP detection recall and precision (percentage) of
state-of-the-art detecion models on UFPR-ALPR.

Methods Recall Precision F1-score runtime(ms)
YOLOv3 97.39 94.91 96.13 21
EAST 99.89 92.78 96.2 26
R-FCN 99.83 94.56 94.56 66

Laroca et al. 98.33 - - 16
FGFA 98.28 97.19 97.19 87

AWFA-LPD(Ours) 100 97.30 98.63 78

Table 2: Ablation studies on UFPR-ALPR. The optical flow
extraction module and NLS module are removed respec-
tively to verify the effectiveness of our method.

Methods Recall Precision F1-score runtime(ms)
AWFA(not flow+NLS) 98.44 95.39 96.89 68

AWFA(not flow) 98.44 96.41 97.41 73
AWFA(not NLS) 100 96.98 98.47 76

AWFA-LPD(Ours) 100 97.30 98.63 78

In order to study the impact of T and K on our system, we
verify other values of K and T . When K is less than 5, set K = 2
to get the maximum recall rate and precision. When K is greater
than 5, although the precision is 98.03% when K = 7, the runtime
exceeds 150ms and is not efficient. Similarly, compared with T =
0.01, 0.5 and 1, the best effect is obtained when T = 0.1. The
experimental results on UFPR-ALPR are shown in Table 1. Since
Laroca et al. method only gives the recall result, we use − instead
of precision here. It is not difficult to see that our method achieves

satisfactory results in the accuracy of detection. Since our model is
integrated with the optical flow extraction module, it does not have
a great advantage in running time. In addition, the precision rate
and recall rate are higher than any other algorithm with known
results. The recall rate reaches 100% in the UFPR-ALPR dataset, that
is, all positive samples are detected. In this aspect, state-of-the-art
(SOTA) effect is achieved.

We next conduct ablation studies to analysis the impact of each
component in our method. As can be seen from Table 2, when the
optical flow extraction module is removed, although the running
time is reduced, the recall rate and precison rate are both decreased.
If we do not add NLS module as post-processing, the recall rate
is not affected, but the precision rate is slightly reduced. It can be
concluded that each component of our approach has a positive
effect on the overall framework.

4 CONCLUSIONS
In this work, we propose a license plate detection architecture
named AWFA-LPD based on deep neural networks, which inte-
grates the features of local frames. AWFA-LPD involves an optical
flow extraction network to align and propagate feature maps of
adjacent frames and adaptive weight feature aggregation module
to fuse features. Extensive comparison experiments prove the effec-
tiveness and efficiency of the proposed LPD framework. Due to the
introduction of optical flow module, there is a partial runtime loss.
Our future work will focus on how to develop more lightweight
feature fusion methods to replace optical flow.
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